Пайка и Сварка

Что такое Пайка?

Пайка как основной метод соединения металлов происходит по причине капиллярного действия расплавленных металлов. Процессы пайки можно подразделять на две категории: с помощью твердых и мягких припоев. Говоря о пайке твердыми припоями, подразумевают использование припоев, плавящихся выше 540 С, мягкими - ниже этой температуры.

При работе твердыми припоями при нагреве паяемых металлов расстояние между их молекулами увеличивается, между ними появляются микроскопические зазоры. Припой получает возможность протечь между соединяемыми металлами и в зазоры между молекулами. При охлаждении металлов и припоя две детали остаются соединенными вместе. Часто сплавы, используемые в качестве припоев, содержат в своем составе спаиваемый металл, чтобы соединение получилось практически незаметным.

Мягкие припои производятся на основе "белых металлов": олова, свинца и висмута. Температура пайки недостаточна для "разрыхления" молекул. Сила их сцепления с поверхностью зависит от способности "приплавляться" к микроскопическим неровностям на металле. Так как сила сцепления мягких припоев обусловлена сцеплением с поверхностью, швы не заполняются ими заподлицо и остаются незаметными.

Успех пайки зависит от пяти основных этапов:

  • Подгонка: все спаиваемые поверхности должны быть тщательно подогнаны друг к другу. Припой не предназначен для заполнения брешей.
  • Чистота: успешное соединение деталей требует безупречно чистой поверхности, иначе припой не растечется должным образом.
  • Флюс: необходимо некоторое вещество, которое не даст кислороду прореагировать с поверхностью металла и загрязнить ее оксидами.
  • Нанесение припоя: на место стыка необходимо наносить подходящий припой и в должном количестве.
  • Нагрев: соединяемые металлы нагреваются лишь чуть выше температуры растекания применяемого припоя.

Осваивая лазерную сварку, ювелир должен понимать некоторые основные принципы процесса сварки, в частности, отличие от пайки. Основное отличие процесса сварки от процесса пайки в том, что при сварке материал, подлежащий свариванию, тоже плавится. При плавке основного материала для сваривания важно проникнуть в шов с правильной энергией луча и ее распределением, чтобы должным образом соединить две детали. Используемые в нашей промышленности лазеры имеют подобные настраиваемые возможности, управляющие различными аспектами совокупной энергии лазера и способом ее подачи.

Первое, что должен осуществить лазерный луч - это физическое проникновение в сварочный шов. Лазер должен соединить вместе два фрагмента металла. Для этого могут потребоваться разные характеристики энергии. Например, трехмиллиметровый платиновый ободок кольца требует для сварки энергию, отличную от той, которая нужна для застежки из желтого золота 18 кт. Прохождение пучка в сварочный шов называется проникновением. Проникновение достигается управлением физической силой лазерного пучка, обычно регулируемой в доступных на рынке лазерных установках через напряжение. Напряжение регулирует силу фотонов (материи) в световом пучке. Напряжение - это лишь одна из характеристик выходного лазерного пучка. Лазер должен обладать достаточной энергией для достижения пучком места сварки, а для этого нужно преодолеть сопротивление металла вокруг сварочного шва и проникнуть сквозь сопротивляющийся металл для доступа к внутренним поверхностям шва.

После проникновения к месту действия, лазерный пучок должен сохранять достаточную мощность для осуществления собственно сварочного действия (плавки окружающего металла). Другая управляемая характеристика мощности лазера - это продолжительность облучения металла в течение одного импульса (продолжительность импульса). Она регулируется на большинстве установок отрезками, измеряемыми и выражаемыми в милисекундах. Металл, по мере облучения лазером, нагревается до точки плавления и растекается по шву, заполняя его и соединяя фрагменты способом, не оставляющим шов. Продолжительность импульса можно использовать для проникновения через плавку, вместо силового проникновения, достигаемого через большое напряжение. Однако, более продолжительные импульсы могут выжечь некоторые металлы, оставляя ямки и делая их более хрупкими. Увеличение продолжительности импульса делает область плавки глубже и шире.

Лазерный пучок для проникновения требует иных аспектов мощности, чем для плавки. Напряжение и продолжительность импульса прямо пропорциональны величине мощности (измеряемой в джоулях) лазерного пучка, то есть увеличение напряжения, либо продолжительности импульса увеличивают входную мощность пучка, а уменьшение любого из этих параметров уменьшает общую мощность пучка.

Что делает лазер лазером?

Когерентный свет может быть сфокусирован намного точнее некогерентного (рассеянного), что позволяет обеспечивать очень высокую концентрацию световой энергии на очень малой площади. Эта энергия, отнесенная к единице площади, в 1000 раз выше, чем энергия на поверхности солнца.

Высокая температура, достигаемая при концентрации энергии, достаточна для локального разогрева металла до точки его плавления и выше.

Фактически на локальное плавление металла затрачивается очень малая часть энергии лазера. Лазер – идеальный инструмент для работы со всеми видами изделий из драгоценных металлов и сплавов, включая изделия с драгоценными вставками, чувствительными к температурным воздействиям.

Лазер, используемый в ювелирной промышленности, является твердотельным лазером и функционирует по классической схеме. Конденсаторная батарея используется для накопления энергии, которая расходуется на генерацию сильного светового импульса в лампе накачки. Этот свет попадает на Nd YAG-кристалл. Кристалл преобразовывает белый свет от лампы накачки в когерентный лазерный луч, который многократно умножается в резонаторе (кристалл, отражающее зеркало, отклоняющее зеркало). Процесс управляется бортовым микрокомпьютером. Высокая температура, возникающая в процессе генерации луча, поглощается деионизированной водой, охлаждаемой в дальнейшем в воздушно-водном теплообменнике.

Через систему линз лазерный луч попадает в рабочую камеру. Процесс сварки контролируется непосредственно через стереомикроскоп.

Чем лучше настроены все узлы лазера, тем выше качество и результат сварки и выше ресурс работы машины.

Энергия лазерного луча расплавляет металл в точке его контакта с металлом. Размер пятна и глубина проникновения луча в металл зависят от трёх основных параметров:

  1. Напряжение (мощность) – чем выше, тем глубже проникновение;
  2. Время (длинна) импульса – чем дольше, тем шире и глубже, тем больше расплавленного металла;
  3. Диаметр луча – чем больше, тем больше площадь сварки (пятна) но и ниже концентрация энергии на единице площади поверхности.

Для различных металлов эти параметры определяются в зависимости от их физико-химических свойств. Например, низкопробные золотые сплавы (белого и желтого цвета) просто и легко свариваются.

Высокопробные сплавы желтого золота (22К и выше), серебряные и медные сплавы свариваются намного хуже из за высокой отражательной способности и высокой теплопроводности.

Сварочный лазер должен иметь качественный (хорошо отьюстированный) луч. В этом случае результат сварки будет оптимальным, даже тогда, когда область сварки выходит за фокальную плоскость оптических приборов лазера.

Точная юстировка (настройка) оптики на всех участках прохождения луча улучшает его качественные параметры. Для достижения наилучшего результата при производстве лазера необходимо провести предварительные юстировочные работы.

Следует принять во внимание, что некоторые так называемые «производители лазеров» просто покупают отдельные компоненты различных поставщиков и механически их собирают. Весьма часто на их производственных участках изготавливаются только корпуса приборов.

Только отличная юстировка луча обеспечивает высококачественный результат и высокий ресурс работы.

Пайка и сварка – сравнение процессов.

Главная цель разработки лазеров для использования в ювелирной промышленности состояла в том, чтобы сэкономить время, уменьшить уровень брака и улучшить качество производимых изделий. Весьма часто, готовые ювелирные изделия отбраковываются из за дефектов, которые не могут быть устранены традиционными технологическими методами.

При пайке различия в цвете и твердости металла припоя ухудшают дизайн изделия и его механические свойства. Кроме того, после этой операции необходимо проводить отбеливание изделия с последующей полировкой.

При сварке нет необходимости в применении припоя. В этом случае используется присадочная проволока из металла, аналогичного металлу изделия, и нет разницы ни в цвете, ни в твердости. Нет так же необходимости отбеливания изделия с его последующей полировкой. Все эти аспекты делают лазер абсолютно необходимым инструментом для ремонта ювелирных изделий.

Элементы изделий, чувствительные к высоким температурам, такие, например, как ювелирные вставки (драгоценные и другие камни), а также пружинные элементы могут быть повреждены при ремонтных операциях, связанных с пайкой. Поэтому эти элементы предварительно должны быть удалены. Эти процедуры достаточно трудоёмки. Кроме того, камни, иногда достаточно дорогие, могут быть повреждены в результате раскрепки изделия. Пружинные элементы могут потерять свои механические свойства в результате отжига, при нагреве изделия под пайку. После пайки эти элементы необходимо установить на изделие – закрепить вновь вставки или завести пружины.

В случае лазерной подварки дефектов нет необходимости выкреплять камни и демонтировать пружинные элементы, так как высокотемпературное воздействие энергии лазерного луча сконцентрировано только в месте заварки дефекта и не нагревает всё изделие. Соответственно не нужно вновь крепить камни и заводить пружины.

В связи с этим лазер имеет существенное преимущество перед всеми остальными видами сборки, при этом значительно сокращается операционное время сборки, поскольку не требуется использование открытого пламени для пайки и целого ряда промежуточных технологических операций и приспособлений для их проведения.

Типовое применение лазера в ювелирной промышленности.

  • Подварка дефектов (пор, раковин) с применением присадочной проволоки идентичного сплава.
  • Подварка дефектов (пор, раковин) с применением присадочной проволоки идентичного сплава для изделий со вставками из драгоценных камней и элементов, чувствительных к нагреву.
  • Подварка дефектов (пор, раковин) с применением присадочной проволоки идентичного сплава для изделий с пружинными элементами. Без отжига последних.
  • Сборка или ремонт уже полированных частей.
  • Сборка или ремонт изделий с закрепленными вставками из драгоценных камней, чувствительных к нагреву.
  • Все виды монтировочных работ без применения фиксирующих приспособлений (биндеры, фиксирующие пинцеты и т.д.)
  • Ремонт антикварных изделий без снятия/порчи патины.
  • Ремонт дефектов закрепки – крапанов и других видов кастов без предварительной раскрепки камней, включая драгоценные.
  • Сборка трудоемких изделий с большим количеством мелких элементов без предварительной монтировки в гипсе.
  • Сборка браслетов.
  • Ремонт и сборка полых изделий с толщиной стенки менее 0,2 мм.
  • Сварка шинок колец при операции уменьшения размера.
  • Удаление гравировки методом подварки.
  • Соединение различных металлов (золото/платина, золото/титан и т.д.)
  • Сборка и ремонт элементов часов, в том числе из титана и нержавеющих сталей.
  • Ремонт матриц и пуансонов для штамповки.

Графы

Каталог продукции.